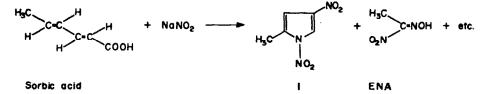
A NEW N-NITROPYRROLE

1,4-DINITRO-2-METHYLPYRROLE, FORMED BY THE REACTION OF SORBIC ACID WITH SODIUM NITRITE

YUKIO KITO and MITSUO NAMIKI*

Department of Food Science and Technology, Nagoya University, Nagoya, Japan

and


KEIICHI TSUJI

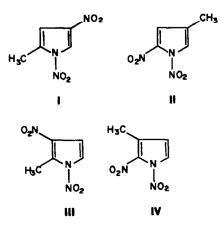
The Institute of Physical and Chemical Research, Yamatocho, Saitama, Japan

(Received in Japan 14 May 1977; Received in the UK for publication 22 September 1977)

Abstract—A new N-nitropyrrole, 1,4-dinitro-2-methylpyrrole, has been isolated and identified as one of the active products of the acidic reaction mixture of sorbic acid and sodium nitrite in the rec-assay and growth inhibition tests on bacteria. The various spectral data that led to the proposed structure, and some of its chemical properties are described.

Kada has previously shown that a strong DNA damaging activity on bacteria is developed when a mixture of sorbic acid and sodium nitrite is heated on a boiling water bath.¹ Ethylnitrolic acid (ENA) is possibly one of the active products in the mixture.² When the reaction was carried out without pH control (initial pH 4.3; final pH 6.0), a marked dependence of the processes as well as the yields of the active agents on the pH of the reaction was noted. While the yield of ENA was maximum when the pH was controlled at pH 4.2, the growth inhibitory activity was greatest at a reaction of pH 3.5. The present paper is concerned with the isolation of a new product, 1,4-dinitro-2-methylpyrrole, from the reaction and its structural elucidation mainly based upon various spectroscopic studies. a pyrrole ring, and the NMR signals are consistent with those known for pyrrole derivatives.^{3,4} If 1 is assumed to be a Me-substituted pyrrole, the facts that no appreciable change was observed in the 'H NMR signals by the addition of D₂O or a trace of piperidine⁵ to the CDCl₃ solution of 1 at room temperature, and that the absorption band around 3400-3500 cm⁻¹ is absent in the IR spectrum, suggest the absence of a pyrrole N-H group. Moreover, the fact that 1 was positive to Ehrlich's reagent⁶ but became negative when treated with diazomethane to give 3 seems to mean at one α -position of the pyrrole ring of 1 is free or potentially free. Two signals of aromatic methine groups at δ_C 124.3; δ_H 8.88 and δ_C 113.2; δ_H 7.91 (assigned by the 'H singlefrequency off resonance decoupled spectra), are very

reasonably interpreted as a combination of the NO₂, NO, 3.5, (Experimental) yielded after purification by chromatography a crystalline product, (1) m.p. 136-137°.

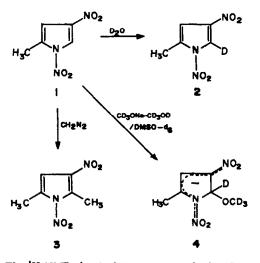

Elemental analysis of 1 was consistent with the formula $C_5H_5O_4N_3$, and high resolution mass spectrum of 1 gave a molecular ion peak at m/e 171.0284 corresponding to $C_5H_5O_4N_3$ (m/e 171.0279).

The ¹H NMR spectrum of 1 in CDCl₃ showed an AB-type signal with two aromatic protons at 7.91 (d, 1H, J = 2.93 Hz) and 8.88 (d, 1H, J = 2.93 Hz) and one Me group absorption peak at 2.65 (s. 3H). Furthermore, the ¹³C FT NMR spectrum of 1 in CDCl₃ exhibited four aromatic ¹³C signals, two doublets and two singlets in the off-resonance decoupled spectrum, in the region of 113-141 and one Me signal at 19.1. 1 was positive to the pine splinter test giving a red color indicating the presence of

different from each other in the chemical shifts, especially in ¹³C NMR, and are assigned to two methine groups at α and β -positions, respectively. These data reasonably lead to the assumption that 1 is an N, α , β -trisubstituted pyrrole containing one Me group.

The unassigned part of the formula, N_2O_4 , may be resonably interpreted as a combination of the NO₂, NO, ONO₂, and ONO groups. However, ONO and ONO₂ groups can be eliminated based on the absence of characteristic IR bands. The nitroso group must also be absent because 1 did not absorb at 760-770 nm, which is characteristic for aromatic nitroso compounds, and also it was negative to the color reaction with diphenylamine-PdCl₃ for detection of nitrosamines. These results indicate the absence of the functional group NO in the molecule of 1.

On the other hand, IR absorption bands situated at 1525 and 1580 cm⁻¹ (CHCl₃) seem to be attributable to ν_{m} C-NO₂ and ν_{aa} N-NO₂, respectively. Since the ¹H chemical shift of the Me proton of N-methylpyrroles is usually larger than 3.5, while that of 1 was 2.65, 1 is probably a N-nitro rather than N-Me pyrrole. Consequently, the structure of 1 was presumed to be one of the following.



Treatment of 1 with diazomethane gave the methylated derivative 3 as yellow needles, m.p. 160-161°. The 'H and ¹³C NMR spectra of 3 were devoid of signals corresponding to the α -methine group, instead showing new signals due to a Me group (δ_C 15.7; δ_C 2.83), an indication that the α -methine group of the pyrrole was methylated during the treatment. The 'H chemical shift of the Me signal of 3 was downfield with respect to that of the original, but the opposite was true for the ¹³C chemical shift. The original Me group in the undecoupled ¹³C NMR spectrum of 3 showed long-range coupling (d, J = 3.1 Hz) identical with that of 1 but the new one

showed no long-range coupling. It was thus concluded that structure I is the most reasonable one for 1.

Based on the structure 3, it seems likely that appearance of the ¹³C chemical shift of the new Me group at a higher field than that of the original might have been caused by a steric compression in the structure. Moreover the two quarternary ring carbons thus formed at α -carbons of the pyrrole ring result in the same value for the chemical shift of the ¹³C NMR signal. Consequently, the ¹H and ¹³C NMR spectra of 1 and 3

were assigned as shown in Table 1.

The ¹H NMR signal of the α -proton of 1 in CDCl, or DMSO-d₆ showed no significant change with the addition of D₂O, but it disappeared completely when a pyridine-d₆ solution of 1 was left for 2 days in an ice box after the addition of D₂O. Moreover, when 1 was dissolved in D₂O by heating, the signal that appeared at 9.36 (H α) as doublet in the initial stage disappeared almost completely

Position Nob	1		3	
	^б н	δ _C	^б н	⁶ с
2	¹	140.6 (seemingly broad q 6.7)		138.4 (-) ^c
3	7.91 (d 2.93)	113.2 (d 180.7, d 4.3, q 4.3)	7.74 (5)	113.1 (d 177.0, q 4.3)
4		136.2 (seemingly broad d 3.7)		$137.4(-)^{c}$
5	8.88 (d 2.93)	124.3 (d 200.2, d 5.5)		$138.4(-)^{c}$
2 - Me	2.65 (s)	19.1 (q 131.8, d 3.1)	2.61 (s)	'18.6 (q 132.4, d 3.1)
5-Me			2.83 (s)	15.7 (q 134.3)

Table 1. 'H and ¹³C NMR data" of 1 and 3

^aSolvent : CDC1₃ (J_{1} , G_{H} of <u>1</u> was measured in DMSO-d₆), δ : ppm from TMS , The figures in parentheses relate to coupling constant in Hz.

^CNo assignment because of the overlap of 1 : R-H 2,4, and 5 signals 3 : R=CH3

after 2 hr, while the one that appeared at 8.36 $(H\beta)$ as a mixture of singlet and doublet collapsed into a singlet. No significant change was observed in D₂O acidified with DCI. That a nitropyrrole easily undergoes a base-catalyzed hydrogen exchange at the α -position has been reported,⁷ but the present case is of interest because of the highly reactive α -proton proved exchangeable without addition of a base catalyst. This also explains the fact that the α -position of 1 was easily methylated by treatment with CH₂N₂.

Addition of an equivalent amount of methanolic sodium methoxide to a DMSO-d₆ solution of 1 readily colored brown, along with the significant changes in the ¹H NMR spectrum. Immediately after the addition, all proton signals due to 1 disappeared and two singlets at 2.00 and 6.93 (3H; 1H), which may be assigned to Meisenheimertype adduct 4,⁷ appeared together with other unidentified signals probably related to decomposition products. Prolonged reaction seemed to lead to decomposition of 4 along with complete disappearance of the two singlets. No hydrogen exchange reaction was observed, probably being obscured by the formation of Meisenheimer-type adduct. Failure to observe an α -proton signal of the adduct might indicate a sufficiently rapid hydrogen exchange reaction at the α -position along with the addition reaction.

Each of the mass spectra of 1 (M^+ 171), 2 (M^+ 172) and 3 (M^+ 185) exhibited M-16 (M-O) and M-30 (M-NO) ion peaks indicating the presence of NO₂ groups, though there was no peak at M-46 (M-NO₂). 1 gave a base peak at *m/e* 39 (probably cyclopropenyl ion), and this peak was also very strong in the mass spectrum of 3. The formation of cyclopropenyl ion as the base peak of pyrroles has well been known⁶ but the formation pathway may not be the same for unusually substituted pyrroles such as 1 and 3.

The addition of an alkali markedly changed the UV spectrum of 1. At pH 9.9 (D₂O+1 N NaOH) the absorption maxima at 229 and 270 nm underwent hypochromic change, while those at 328 and 368 nm suffered hyperchromic red shift and hyperchromic blue shift, respectively. Since these changes were not reversed by neutralization with HCl, the addition of NaOH must have caused rapid decomposition of 1 in an irreversible manner. In the case of the methylated compound 3, no significant change in the UV spectrum was observed with alkali addition. All absorption maxima of 1 and 3 showed a blue shift in polar solvents. The UV spectrum of 3 in 2 M H₂SO₄ remained unchanged even after the compound was left at 60° for 24 hr. Extraction from this solution recovered unaltered 3 which showed no shift of absorption by alkali. These facts may also evidence the absence of ONO and ONO₂ groups in the molecules of 3 and 1.

In conclusion, various spectral data reasonably lead to identification of the newly isolated product 1 as a new N-nitropyrrole, 1,4 - dinitro - 2 - methylpyrrole. The machanism of formation of 1 is interesting but not much can be said about it at this stage except that the pyrrole ring skeleton is probably derived from sorbic acid by nitration or nitrosation followed by decarboxylation.

EXPERIMENTAL

All materials and other reagents used were of guaranteed grade.

M.p. were determined by a Yanagimoto micro m.p. apparatus and are uncorrected. UV spectra were recorded on a Hitachi EPS-3T recording spectrometer. IR spectra were recorded on a JASCO Model IR-G grating spectrophotometer. 'H NMR spectra were mainly obtained with a JNM-MH-100 and partly on JNM-FX 60 and JNM-FX 100 spectrometers. ¹³C NMR spectra were recorded with JNM-FX 60 and JNM-FX 100 spectrometers. The chemical shifts (δ) were calculated on the basis of TMS as an internal standard unless otherwise noted. Mass spectra were recorded on JMS-D100 and JMS-01SG-2 spectrometers operated at 75 eV. PH control of reaction mixture was done by use of a Radiometer Titrator TTT-2 pH stat with dil. H₂SO₄. Fluorescent silica gel (Wakogel B-5FM) was used for TLC and spots on TLC Lamp PUV-1.

1,4-Dinitro-3-methylpyrrole 1. A soln of NaNO₂ (82.8 g) was added to a partially suspended soln of sorbic acid (16.8 g) in distilled water (1.51). Keeping the pH of the mixture constant at 3.5 with dil. H₂SO₄, the mixture was stirred at 60° for 2 hr. The mixture was extracted with three 500 ml portions of CH2Cl2. The combined extracts were washed with water, dried over Na,SO4 and evaporated to dryness in vacuo to give 3.5 g of residue. The residue was chromatographed on a silica gel column with CHCl₁, and fractions were monitored by TLC (CHCl₂-MeOH, 97:3). The fractions that gave a single yellow spot of 1 were collected and concentrated in vacuo to give approximately 1 g of 1, yellow needles (from CHCl₃), m.p. 136-137° (Found: C, 35.62; H, 2.97; N, 24.86. Calc. for C3H3N3O4. C, 35.09; H, 2.95; N, 24.56%): UV λ_{max} (H₂O) 210 nm (log ϵ 4.03), 229 (4.20), 270 (4.10), 329 (3.91), 386 (3.23); Amax (H₂O + 1N NaOH, pH 9.9, about 20 min after the addition) 299 nm (log e 4.08), 345 (4.01); Amex (EtOH) 212 nm (log € 4.02), 234 (4.19), 275 (4.11), 336 (3.88), 398 (3.28); A_{max} (nhexane) 237 nm, 282, 288 (sh), 340 (sh), 350, 396 (sh), 409, 428; IR (KBr) 3080 (pyrrole ring vCH), 3050 (pyrrole ring vCH), 1590 (N-NO₂ V_{as} NO₂), 1550 (sh) (C-NO₂ V_{as} NO₂), 1530 (C-NO₂ V_{as} NO2), 1470 (8 CH3), 1420, 1389, 1380, 1345 (v, NO2), 1122, 1098, 1030, 965, 910, 800, 750, 565 cm-1; IR (CHCl3) 3100 (pyrrole ring ν CH), 1603 (pyrrole ring ν C = C), 1580 (N-NO₂ ν_{as} NO₂), 1540 (sh) (C-NO₂ ν_{as} NO₂), 1525 (C-NO₂ ν_{as} NO₂), 1473 (δ_{as} CH₃), 1425, 1386, 1342 (ν_{as} NO₂), 1121, 1093, 968, 865, cm⁻¹; ¹H NMR (CDCl₃) see Table 1; ¹H NMR (DMSO-d₄) 2.49 (s, 3H), 8.36 (d, 1H, J = 2.44 Hz), 9.38 (d, 1H, J = 2.44 Hz); ¹H NMR (pyridine-d₃) 2.46 (s, 3H), 8.14 d, 1H, J = 2.9 Hz), 9.67 (d, 1H, J = 2.9 Hz); ¹H NMR ($D_2O + DCl$, δ from DSS)2.61 (s,3H), 8.33 (d, 1H, J = 2.93), 9.34 (d, IH, J = 2.93); ¹³C NMR (CDCl₃) see Table 1; ¹³C NMR (DMSO-d₆) 18.0 (off-resonance q), 114.0 (d), 125.2 (d), 136.7 (s), 140.9 (s); MS m/e (relative intensity) 27 (22), 28 (CH₂N⁺, 64), 29 (5), 30 (NO⁺, 92), 32 (14), 37 (7), 38 (22), 39 (C₃H₃⁺, 100), 40 (16), 41 (C2H3N*, 20), 42 (16), 43 (39), 44 (10), 50 (8), 51 (11), 52 (12), 53 (9), 54 (6), 55 (11), 57 (13), 62 (13), 62 (9), 63 (24), 64 (18), 65 (45), 66 (11), 67 (6), 68 (5), 69 (7), 71 (7), 79 (5), 82 (8), 83 (5), 85 (5), 94 (6), 124 (M*-HNO2, 5), 141 (M*-NO, 6), 155 (M*-O, 6), 171 (M*, 60). MW; Calc. for C₅H₅N₃O₄: 171.0280. Found (high-resolution MS): 171.0284. Both the pine splinter test by the use of matchwood moistened with conc. HCl and color reaction with Ehrlich's reagent were positive. This compound was negative to the diphenylamine-palladium chloride reagent for detection of nitrosamines.

1.4-Dinitro-3-methylpyrrole-5-d 2. 1 was dissolved in D_2O with heating, and allowed to stand overnight. After a hydrogen exchange had been confirmed from the ¹H NMR spectrum, the soln was extracted with CHCl₃, dried over Na₂SO₄ and evaporated to dryness *in vacuo* to give 2: ¹H NMR (CDCl₃) 2.63 (i, 3H), 7.94 (s, 1H); ¹H NMR (D_2O) 2.62 (i, 3H), 8.36 (s, 1H); MO⁺, 19), 42 (11), 43 (49), 44 (15), 50 (11), 51 (10), 52 (13), 53 (12), 54 (17), 55 (9), 56 (5), 57 (9), 62 (7), 63 (16), 64 (29), 65 (24), 66 (63), 67 (11), 68 (7), 69 (5), 72 (9), 80 (6), 82 (9), 94 (7), 95 (5), 110 (6), 124 (M⁺-NO₂, 5), 142 (M⁺-NO, 16), 156 (M⁺-O, 8), 172 (M⁺, 85).

1.3-Dinitro-2, 5-dimethylpyrrole 3. A soln of diazomethane in ethyl ether (200 ml) and MeOH (1 ml) was added to a soln of 1 (0.6 g) in CHCl₃ (200 ml). The soln was allowed to stand for 11 hr at 0° and then for 11 hr at room temp. TLC of the mixture showed two main spots. R_{f_1} -values 1.1 and 0.58 (relative to that

of 1, with CHCl₃-MeOH 19:1), which showed up purple and reddish brown under UV light (PAN-UV-Lamp), and yellow and colorless under visible light, respectively. There was no spot detected for 1. The mixture was evaporated to dryness in vacuo. The residue was chromatographed on a silica gel column. The yellow main product 3 $(R_{f_1} 1.1)$ and another product $(R_{f_1} 0.58)$ were eluted with CHCl₃ and CHCl₃-MeOH (98:2), respectively. 3 (90 mg), m.p. 161-162°, was obtained as yellow needles, (recrystallized from CHCly-n-hexane). (Found: C, 38.68; H, 3.85; N, 22.74. Calc. for C₆H₇O₄N₃: C, 38.92; H, 3.81; N, 22.70%): UV λ_{max} (H₂O) 217 nm (sh) (log e 4.07), 234 (4.24), 268 (4.03), 325 (3.82), 378 (sh) (3.71); λ_{max} (EtOH) 220 nm (sh) (log e 4.05) 237 (4.24), 275 (4.05), 332 (3.80), 390 (3.21); λ_{max} (n-bexane) 222 nm (sh), 240, 267 (sh), 281, 286 (sh), 317 (sh), 337 (sh), 346, 410; IR (KBr) 3080 (pyrrole ring vCH), 1582 (N-NO₂ v_m NO₂), 1530 (C-NO₂ v_m NO₂), 1470 (δ_{m} CH₃), 1457, 1429, 1405, 1375, 1355, 1340, 1312, 1154, 1057, 1039, 885, 860, 778, 760, 730, 561 cm⁻¹; IR (CHCl₃) 3090 (pyrrole ring ν CH), 1582 (N-NO₂ ν_{es} NO₂) 1534 (C-NO₂ ν_{es} NO₂), 1485 (δ_{es} CH₃), 1458, 1420, 1389, 1380, 1355, 1339, 1315, 1150, 1050, 1038, 870, 840 cm⁻¹; ¹H NMR (CDCl₃) see Table 1; ¹H NMR (D₇O) 2.53 (s, 3H), 2.72 (s, 3H), 8.01 (s, 1H); ¹³C NMR (CDCl₃) see Table 1; MS m/e (relative intensity), 27 (47), 28 (7), 29 (6), 30 (NO⁺, 81), 37 (8), 38 (11), 39 (C₃H₃⁺, 63), 40 (16), 41 (25), 42 (25), 43 (39), 50 (36), 51 (80), 52 (50), 53 (52), 54 (10), 55 (14), 57 (13), 63 (15), 64 (7), 65 (8), 66 (42), 67 (22), 68 (11), 69 (7), 71 (6), 74 (8), 75 (5), 76 (5), 77 (100), 78 (36), 79 (12), 80 (6), 81 (6), 82 (11), 83 (6), 84 (6), 85 (8), 86 (5), 92 (6), 93 (8), 108 (8), 109 (6), 125 (15), 138 (M⁺-HNO₂, 8), 154 (5), 155 (M⁺-NO, 17), 169 (M*-O, 3), 185 (m*, 51).

The pine splinter test on 3 was positive (red) and Ehrlich's test negative. The compound was treated with 2 M H_2SO_4 at 65° for 2 days. The soln was extracted with CH_2Cl_2 , dried over Na_2SO_4

and evaporated to dryness in vacuo. The extract gave only one spot of 3 on TLC. The UV spectrum (H_2O) of the extract was identical to that of 3 and was not altered by the addition of NaOH.

Meisenheimer-type adduct of 1.4. An equivalent amount of 3 M methanolic NaOMe was added to a 0.33 M soln of 1 in DMSO-d₆. The ¹H NMR spectrum was recorded at regular intervals after the addition. ¹H NMR data suggested the formation of a Meisenheimer-type adduct: ¹H NMR (immediately after the addition) 1.5-2.3 (4H, excluded 3H of s at 2.00), 2.00 (s, 3H), 3.6-4.3 (broad, Ca. 11H), 6.93 (s, 1H).

Acknowledgements—This work was supported by a grant from Nissan Science Foundation. The authors thank Mr. H. Ito for his excellent technical assistance. Thanks are also due to Dr. T. Kada of National Institute of Genetics for valuable discussion and suggestions.

REFERENCES

- T. Kada, Ana. Rep. Nat. Inst. Genetics Japan 24, 43 (1974).
- ²M. Namiki and T. Kada, Agr. Biol. Chem. 39, 1335 (1975).
- ³E. Lippmaa and M. Mägi, Org. Magnetic Resonace 4, 153 (1972).
- ⁴R. J. Abraham, R. D. Lapper, K. M. Smith and J. F. Unsworth, J. Chem. Soc. Perkin Π, 1004 (1974).
- ⁵S. Gronowitz, A-B. Hörnfeldt, B. Gestblom and R. A. Hoffman, Arkiv Kemi. 18, 133 (1961).
- ⁶A. H. Cook and J. R. Majer, J. Chem. Soc. 488 (1944).
- ⁷F. De Santis and F. Stegel, Tetrahedron Letters 1079 (1974).
- *H. Budzikiewicz, C. Djerassi and D. H. Williams, Mass Spec-
- trometry of Organic Compounds, p. 596. Holden-Day, San Francisco (1967).